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Thermal levitation
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A particle with a density slightly larger than that of the fluid in which it is immersed
will sediment. However, if the particle’s temperature is higher than that of the fluid,
the terminal velocity of sedimentation will be smaller and can even change sign. When
the terminal velocity is zero we say there is thermal levitation. Thermal levitation can
also occur when the density and temperature of the particle are smaller than those
of the fluid. Using a two-component thermal lattice Boltzmann equation method, we
study this phenomenon and show it can be stable or unstable.

1. Introduction
Circular particles moving in a two-dimensional Newtonian fluid have been studied

numerically under diverse circumstances. Hu, Fortes & Joseph (1992a), Hu, Joseph &
Crochet (1992b) and Feng, Hu & Joseph (1994) analysed the sedimentation of a
particle in a narrow cavity by solving Navier–Stokes equations. Gan et al. (2003) and
Yu, Shao & Wachs (2006) studied the case of a particle with constant temperature.
Among other results, they found that the temperature difference has a significant effect
on the terminal velocity of the particle and can even change the direction of motion.

We study the motion of a particle with a constant temperature in contact with
a fluid in a narrow cavity with walls also at a constant temperature. The fluid is
initially at the wall temperature. If the density and temperature difference between
the particle and fluid are small, the buoyancy, drag and convective forces balance
and the particle will move with a constant vertical terminal velocity. Thus, there is a
thermal correction to Stokes’ law. When the terminal velocity is zero, the convective
force balances the buoyancy force and we call this state stable thermal levitation. As
the temperature or density difference increase, thermal levitation becomes unstable.

To study a moving particle inside a fluid with heat transfer we used a D2Q9 (Qian,
d’Humieres & Lallemand 1992) thermal two-component lattice Boltzmann equation
(LBE) (Shan 1997; Inamuro et al. 2002). The boundary conditions for moving particles
in isothermal flows using LBE were first proposed by Ladd (1994) and improved by
Aidun & Lu (1995) and Aidun, Lu & Ding (1998). Guo & Zheng (2002) extended
the algorithm to handle arbitrary geometries. The first boundary conditions for the
temperature field were extensions of the bounce-back rule (Inamuro et al. 2002; Shan
1997) for flat walls and were generalized by Huang, Lee & Shu (2006) for walls of
arbitrary shape using an interpolation method. In this paper, we extend the above
boundary conditions to a moving particle with heat transfer.

In § 2 we briefly discuss the two-component thermal LBE method followed by a
presentation of the flow of interest and validation of the method in § 3. In § 4 we
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present numerical simulations of stable and unstable thermal levitation. We end with
some conclusions in § 5.

2. LBE method
In order to numerically investigate the problem of the motion of a cylindrical

particle in a fluid with thermal gradients, we used a D2Q9 two-component lattice
Boltzmann equation which takes into account moving circular boundaries. In this
method, space is two-dimensional and discretized using a square lattice. The state
of the fluid at the node with vector position r at time t is described by the particle
fk(r, t) and temperature gk(r, t) distributions that evolve in time and space according
to

f̃ k(r, t) = fk(r, t) − 1

τ

[
fk(r, t) − f

(eq)
k (r, t)

]
+ Gk, (2.1)

fk(r + ek, t + 1) = f̃ k(r, t), (2.2)

g̃k(r, t) = gk(r, t) − 1

τT

[
gk(r, t) − g

(eq)
k (r, t)

]
, (2.3)

gk(r + ek, t + 1) = g̃k(r, t). (2.4)

The time evolution is conveniently divided in two steps: collision (relaxation towards
local equilibrium) in (2.1) and (2.3) and streaming in (2.2) and (2.4). The collision
step is local and the streaming is uniform. The coefficients τ and τT are the relaxation
times related to the fluid viscosity ν and thermal diffusivity α by

ν = (τ − 1/2)/3, α = (τT − 1/2)/3.

The equilibrium distribution functions f
(eq)
k and g

(eq)
k are

f
(eq)
k (r, t) = wkρ

(
1 + 3ek · u + 9

2
(ek · u)2 − 3

2
u2

)
, (2.5)

g
(eq)
k (r, t) = wkT (1 + 3ek · u). (2.6)

In these expressions, the macroscopic fields are

ρ(r, t) =
∑

k

fk(r, t), (2.7)

ρu(r, t) =
∑

k

ekfk(r, t), (2.8)

T (r, t) =
∑

k

gk(r, t), (2.9)

ρ, u and T being the density, velocity and temperature fields. The microscopic
velocities ek are given by

e0 = (0, 0),

ek = (cos(π(k − 1)/2), sin(π(k − 1)/2)) , k = 1, . . . , 4,

ek =
√

2 (cos(π(k − 9/2)/2), sin(π(k − 9/2)/2)) , k = 5, . . . , 8,

and w0 = 4/9, wk = 1/9 for k = 1, . . . , 4 and wk = 1/36 for k = 5, . . . , 8.
The last term in (2.1) is related to a body force which in this case is the Boussinesq

approximation to the buoyancy force (Inamuro et al. 2002),

Gk = −3βwk(T (r, t) − Tw)ek · g, (2.10)
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where β is the coefficient of thermal expansion, g is the acceleration due to
gravity and Tw is a reference temperature chosen as the temperature of the cavity
walls.

Clearly, (2.1)–(2.4) can be applied only if the neighbours of a fluid node are fluid.
When a fluid node is near a solid wall, additional information must be provided.
Half-way bounce–back boundary conditions were used for flat solid walls (Ladd
1994) for both the particle and temperature distribution functions. For curved walls
the boundary conditions of Guo & Zheng (2002) were used for the particle distribution
functions, and those of Huang et al. (2006) for the temperature distribution functions.
In these cases, the unknown distribution functions at a solid node are separated
into equilibrium and non-equilibrium parts. The first is calculated using a fictitious
equilibrium function that enforces the boundary condition and the non-equilibrium
part is approximated by that of the neighbouring fluid along the link using an
interpolation scheme.

For any given time step the force and torque acting on the body are computed using
the momentum-exchange method of Mei et al. (2002) and the new position of the
particle is found using Newton’s equation of motion. The particle moves continuously
and every now and then it covers and uncovers some nodes. The covered nodes
change from fluid to solid while those that are uncovered change from solid to fluid.
Covered nodes assume the momentum of the fluid and there is a net force on the
particle from all the covered nodes. Uncovered nodes assume the average density
and temperature of all the neighbour fluid nodes and the velocity of the particle’s
boundary. There is also a net force on the particle. These two contributions are
added to the force evaluated with the momentum-exchange method to find the total
hydrodynamic force and torque on the particle. Since we know the density, momentum,
and temperature of the uncovered nodes, their particle and temperature distribution
functions can be found by assuming these nodes are in equilibrium and using (2.5)
and (2.6).

To keep the particle inside the container, a bounce-back rule was implemented.
When the distance between the particle and a wall is below some threshold, the
particle’s velocity normal to the wall is reversed. The results obtained show that this
model is enough in sufficient the case when particle–wall collisions are rare.

3. Problem and validation
A narrow cavity of height H and width W with walls at a fixed temperature Tw

is filled with a fluid that has an initial density ρf and temperature Tw . A cylindrical
particle with diameter d , density ρp and fixed temperature Tp is released on the
centreline of the cavity at some distance from the bottom. This is shown schematically
in figure 1(a).

The non-dimensional position r∗, time t∗, velocity u∗, and force F∗ are

r∗ =
r
d

, t∗ = t
α

d2
, u∗ = u

d

α
, F∗ = F

d

ρf να
.

The non-dimensional parameters that define the flow are W ∗ =W/d , H ∗ = H/d , and
the Grashof number Gr, Prandtl number Pr , and density ratio σ given by

Gr =
ρ2

f β�T d3g

ν2
, Pr =

ν

α
, σ =

ρp

ρf

,
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Figure 1. (a) A cylindrical particle inside a narrow cavity of width W and height H .
(b) Comparison of the particle Reynolds number at different Grashof numbers for a
particle with ρp >ρf and Tp < Tw settling in a vertical channel. The results of Gan et al.
(2003) were with (Pr, σ,W ) = (7.0, 1.00232, 4) and Rep =21 when Gr = 0. In our simulations
(Pr, σ,W,H ) = (0.7, 1.00232, 4, 60) and Rep = 20.4 when Gr = 0.

where �T = Tp − Tw . We note that Gr > 0 (Gr < 0) when Tp >Tw (Tp <Tw). The
particle Reynolds number Rep is

Rep = uT

d

ν
,

where uT is the particle’s terminal velocity. In the following we always report our
results in non-dimensional quantities and omit the asterisks.

We validated the code with various flows: natural and forced convection between
concentric (Huang et al. 2006; Shu & Zhu 2002) and eccentric cylinders (Sadat &
Couturier 2000) for a fixed particle, and sedimentation of a particle in a cavity with
and without temperature gradients (Gan et al. 2003; Feng et al. 1994). In all cases,
the results are in good agreement with those reported in the literature.

In particular, in figure 1(b) we compare our results of the particle Reynolds number
for different Grashof numbers for the sedimentation of a particle with ρp > ρf and
Tp <Tw with those of Gan et al. (2003) with Rep = 21 when Gr = 0. Our results
for Rep with Rep = 20.4 when Gr =0 are slightly smaller and this difference can
be attributed to the difference in the value of Rep when Gr = 0 since the values
reported by Yu et al. (2006) with Rep = 21.2 for Gr = 0 are slightly larger than
those of Gan et al. (2003). In these simulations we used d =25 lattice sites and
H = 80.

To study thermal levitation, we take Pr = 7, W = 4 and d = 25 lattice sites. The
height of the cavity was varied from H = 30 to H = 80 and we found that the effects
due to the top and bottom walls are negligible when H � 40 for small Rep . Typical
simulations require 106 iterations. Using an AMD Opteron processor the update time
per site is 3 × 10−6 s so runs took approximately five days.

We will refer to a heavy (light) particle when σ > 1 (σ < 1) and to a hot (cold)
particle when Gr > 0 (Gr < 0). Our main interest is to find Gr0, the value of the
Grashof number where Rep =0 and the particle levitates thermally.
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Figure 2. (a) The vertical component of the convective force Fy on a fixed particle as a
function of time t . From bottom to top, Gr= 50, 54.3, 70, 80, and 95. (b) The horizontal
component of the convective force Fx on a fixed particle as a function of time t . From bottom
to top, Gr = 70, 80 and 95.

4. Results
We first consider a fixed particle initially on the axis of the cavity and measure the

hydrodynamic force F on its surface as a function of the Grashof number. For a hot
particle we find that after a small transient F reaches a steady state which is stable
when Gr is smaller than a critical value Gr(+)

c . In this stable steady state Fx = 0, and
Fy grows linearly with Gr. For Gr >Gr(+)

c we find that after a small transient Fx =0
and Fy reaches a constant value which after a time to yields to an oscillation of Fx

and somewhat later of Fy as we show in figure 2. For a cold particle we found the

same qualitative behaviour and another critical value Gr(−)
c . In summary,

F =

{
C(+)Gr, 0 � Gr < Gr(+)

c ,

C(−)Gr, Gr(−)
c < Gr � 0,

(4.1)

with C(−) < C(+) constants. Larger values of the fluid velocity occur in regions where
the temperature is higher, hence the force at a fixed value of |Gr| is larger for a hot
particle than for a cold one.

When Gr > Gr(+)
c the force on the particle oscillates after a transient to as we show

in figure 2. We note that Fy oscillates with twice the frequency of Fx . Also, the

amplitude of oscillation of Fx , Ax , grows and to decreases as Gr − Gr(+)
c grows:

Ax ∼ (Gr − Gr(+)
c )η and to ∼ (Gr − Gr(+)

c )ξ , (4.2)

with Gr(+)
c = 53, η =0.45, and ξ = − 0.78. For a cold particle Gr(−)

c = − 65, η = 0.45
and ξ = − 0.78. We also find that the frequency of oscillation does not depend on
Gr − Gr(±)

c . These results indicate that there are Hopf supercritical bifurcations at
Gr(+)

c and Gr(−)
c (Bérge, Pomeau & Vidal (1988); Desrayaud & Lauriat 1993). For Fy

we find the same scaling behaviour for the time when the oscillation begins.
In figure 3(a–d) we show the evolution of the vorticity lines and in figure 3(e–f ) the

corresponding position of ideal tracers initially in three rings around the particle for
Gr = 95 (the top curves in figure 2a, b). For t < to, (a and e), there is a steady flow with
two vortices. When t ∼> to, (b), the vorticity lines begin to oscillate, the two vortices
break into smaller ones and we observe vortex shedding. A vortex is formed on the
left side of the particle, (c), which is shed as a new one is being formed, (d), and this
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Figure 3. Isovorticity lines (a)–(d) and position of ideal tracers (e)–(h) for Gr = 95 for which
to = 13.5. In (a) and (e) t = 7.61, in (b) and ( f ) t = 16.38, in (c) and (g) t = 19.40, and in (d)
and (h) t = 20.95. There are 9000 ideal tracers initially located in three concentric rings around
the particle, of diameters 1.16, 1.24 and 1.32.

process continues. The tracers show periodic orbits during the transient steady state,
(e), and mixing for t > to ( f–h) (Ottino 1989).

A free particle initially on the axis of the cavity with σ slightly different from 1 will
move vertically and after a transient reach a steady state with a positive, negative or
zero terminal velocity uT depending on the value of the Grashof number as we show
in figure 4 where uT =0 when Gr =28. We found numerically that

uT = a(Gr − Gr0), (4.3)

where Gr0 is the Grashof number for thermal levitation and a is a constant. Numerical
results for different values of σ are shown in figure 5 in terms of the particle Reynolds
number. The linear relation between the Grashof number and the terminal velocity
holds when Gr is near the levitation value Gr0 because the flow will be in the limit of
low Reynolds numbers where Stokes’ law holds.

When the particle reaches its terminal velocity the total force is zero so

C(±)Gr +
πd3g(1 − σ )

4να
− δuT = 0, (4.4)

where the first term is the convective force taken from (4.1), the second the buoyancy
force and the last one Stokes’ drag force (δ a constant). For thermal levitation, uT = 0
and Gr =Gr0 so that

Gr0 =
πd3g(σ − 1)

4C(±)να
. (4.5)
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Figure 4. Vertical position of a hot heavy particle for different Grashof numbers with
H = 60 and σ = 1.005. From bottom to top, Gr = 26, 27, 28, 29, and 30.
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Figure 5. Particle Reynolds number Rep as a function of Gr−Gr0. For σ = 0.98 Gr0 = −114.5,
for σ =0.995 Gr0 = − 28.2, for σ = 1.005 Gr0 = 28 and for σ = 1.02 Gr0 = 110.2. For σ = 0.995
and 1.005 thermal levitation is stable, and for the other values of σ thermal levitation is
unstable.

This result is valid when Gr(−)
c <Gr0 <Gr(+)

c . Outside this interval thermal levitation is
unstable; after some time the particle begins to oscillate and migrates vertically. From
the bounds on Gr for stable thermal levitation and (4.5), we find equivalently that
if σ (−)

c < σ < σ (+)
c with σ (−)

c ∼ 0.99 and σ (+)
c ∼ 1.01, thermal levitation is stable. This is

confirmed in figures 6 and 7. In this case, instability sets in via a Hopf supercritical
bifurcation as before.

For a hot heavy particle we show in figure 6 that thermal levitation is stable for
σ = 1.005 and unstable for larger values where oscillations in both directions cause
the particle to sink after a transient where the particle levitates. A similar behaviour
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Figure 6. (a) Vertical and (b) horizontal position of a hot heavy particle for different values
of σ . For σ =1.005 Gr0 = 28, for σ = 1.02 Gr0 = 110.2 and for σ =1.03 Gr0 = 170.5.
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Figure 7. (a) Vertical and (b) horizontal position of a cold light particle for different values
of σ . For σ = 0.995 Gr0 = − 28.2, for σ = 0.98 Gr0 = − 114.5 and for σ = 0.97 Gr0 = − 185.

is found for a cold light particle as we show in figure 7. Thermal levitation is stable
for σ = 0.995 and unstable for smaller values of σ .

The trajectory of a particle with σ = 1.02 and Gr = 110.2 is shown in figure 8(a).
The starting point is (2, 10). The particle initially sinks vertically, then floats and
levitates near (2, 12). This can also be seen in figures 6(a) and 6(b). For t > to the
particle begins to oscillate first horizontally and then also vertically with twice the
frequency, sinking and reaching the bottom of the cavity. The trajectory of a light
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Figure 8. Particle trajectory: (a) hot particle σ = 1.02 and Gr0 = 110.2; (b) cold particle
σ = 0.98 and Gr0 = − 114.8.

particle is similar as we show in figure 8(b). The initial position is (2, 60). During the
first instants the particle floats, then sinks and levitates where it will remain for a
long time until it starts to oscillate horizontally and then also vertically with twice
the frequency as it floats to the top of the cavity.

5. Conclusions
We used a two-component lattice Boltzmann equation to numerically study thermal

levitation of a particle immersed in a fluid. A particle in a fluid levitates thermally
when the convective force equals the buoyancy force, as described by (4.4). Once C(±)

are known, given σ , we find Gr0, the Grashof number for thermal levitation. Thermal
levitation is stable whenever Gr(−)

c < Gr0 < Gr(+)
c and is unstable otherwise. The values

of C(±) and Gr(±)
c were determined numerically by finding the hydrodynamic force

on a fixed particle. We also found a Hopf supercritical bifurcation from steady to
unsteady thermal levitation.
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